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The Problem: High-Assurance
Autonomous Systems

_ Long lifetimes
_ Limited Access
_ Reactive/Adaptive
_ Agent-Based

Architectures
_ Advanced

Algorithms
_ Knowledge-Based
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Verification and Validation of
Autonomous Planning Systems

_ Our approach is to separate
algorithm verification from
domain model validation

Domain
Model

Planning
Algorithm

Autonomous Planner
Domain Engineers

Computer Scientists
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Model Checking

_ Technique  for verification of finite-state
systems - traditionally used for hardware

_ Determines whether a FSM is a “model” of a
temporal logic formula

_ Exhaustive - evaluates all possible executions
of events in the system

_ Allows non-deterministic modeling/abstraction
of the “environment”

_ Limited by “state space explosion”
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Model Checking vs. Planning

_ Exhaustive model checking algorithms can
find flaws in domain models that may not be
discovered by testing with a heuristic planner

Initial State

Hazard State

Goal State
The planner may find
a path to the goal
without discovering
the hazard state.
Model checking tries
all paths and finds
the hazard state.
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The HSTS Planner’s
Domain Description Language

_ Object-oriented data structures with qualitative
and quantitative constraints on variable values

Robot
 :state variables
At: {A,B,C}
Task: {Move,Fix,Rest}
Charge: {Empty,Full}

Hole
 :state variables
At: {A,B,C}
Status: {Exists,Fixed}

((Robot.Task=Fix) starts_before (10 20) (Hole.Status = Fixed))
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Model Checking for DDL

_ Spin (from Bell Labs)

_ Murphi (from Stanford University)
_ SMV (from Carnegie Mellon University)

_ We developed a translation from a DDL model
to a finite state transition model

_ Tested the translation on 3 model checkers:
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Results: Expressibility

_ General translation to finite state transition
model able to express qualitative constraints
with temporal locality

_ No support for quantitative constraints

_ Temporally distant relationships require
special consideration:

_ history variables in Spin & Murphi

_ fairness constraints in SMV
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Results: Performance

_ Experimented on “small” model of autonomous
robot with 65 temporal constraints

_ The model had 16320 reachable states out of
559872 potential states (highly constrained)

_ Exhaustive verification with Spin & Murphi in
under 30 seconds

_ Exhaustive verification with SMV in 0.05
seconds (due to better target language)
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Results: Capabilities

_ Model checking “error traces” are plans

_ Able to perform analysis that are not directly
supported by testing with the planner:

_ Is there a plan (a path from an initial state
to a goal state) for any legal initial state?

_ Is there a plan for every legal initial state?
_ Is there a plan from every reachable state?

_ Can I reach a state where X is true?
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Conclusions

_ Model checking has the potential to overcome
limits to model validation using a planner

_ Model checking can be used to effectively
validate “simple” domain models

_ Further experiments are necessary to see if
temporally distant relations and quantitative
constraints can be effectively supported


